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ABSTRACT 

This work examines two different Baysian approaches to model short term oil price re-

turn for past decades and forecast it. We frst built the multivariable linear regression 

model based on relevant explanatory variables. Then we build the univariate time series 

model using ARIMA models, followed by ARCH and GARCH models. Both methods 

are followed by required procedures and econometrics tests. The forecasting powers of 

time series approach perform better than linear regression and even structural models, 

yet linear approach is very relevant for knowing incapability of each variable to oil price. 
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Chapter 1 

Introduction 

Oil is one of the most important commodities that its price and volatility has huge impact 

on everyoneś life on the planet. Impact of oil price and its applications on daily life is 

undeniable, from all transportations, including fights, cars, and trains to daily consumer 

products such as tires, shampoo, paint and many more products. Oil is the major source 

of heating and energy in the world, which makes it challenge to replace it with other 

resources. Oil heavily effect the economic growth, from common consumer products 

to military and energy sectors. Unexpected movements on oil price has effects on eco-

nomic stability for both supplier and producer countries, although more crucial for oil 

importing countries. Several studies concluded that it is harmful when the oil price has 

more volatility and is less predictable, which can have negative effect on many economic 

indicators (Bosler, 2010; LAM, 2013; Moshiri and Foroutan, 2006) . 

It is benefcial to have accurate oil market forecasts in many sectors of economy. For 

instance both central banks and private sectors are using these forecasts in many cases 

to generate macroeconomics plans and also measuring risks. Some sectors are directly 

depend on these forecasts such as most of transportation manufacturer, utility companies 
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Figure 1.1: Historical price of crude oil, WTI futures (USDOE, 2017). 

and even homeowners are all relay many of their decisions based on the oil prices (Ron, 

Lutz and Robert, 2011). 

Modeling the price of oil is diffcult, because of many fuctuations over time. As you 

can see in this historical graph shown in Figure 1.1, the oil price can dramatically change 

over short time, which makes it very diffcult to predict. in past decade oil prices has fuc-

tuated a lot,from $40 in 2003 to $140 in 2008. Oil demand and supply are quite inelastic 

in short term, that makes the price skyrocketed when the demand for oil exceeds supply. 

The unique feature of this market is that its supply is limited as cannot be renewed. 

Furthermore, oil price is also heavily affected by political turbulences, which makes 

it even more diffcult to predict oil price. For instance, in 1999 the Asian Financial 

Crisis (plummeting demand) and Iraq’s decision to increase oil production (increased 

supply) caused oil prices to reach below $20 levels. The Dotom bubble in 2001 caused 

another round of economic panic, which caused oil price to stay low until early 2002. 

On the other hand and more recently due to fnancial crisis market volatility, oil price 

skyrocketed to $147 that shows how unpredictable price of oil is. Another challenge 

is organization of the petroleum exporting countries (OPEC) that is acting as a swing 

producer, covering the remaining demand after non-OPEC supply is used up, and hence 

takes the market price. However when OPEC produces at full capacity, it will become 

price maker as it will have competitive role in global market (Bosler, 2010). 
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Chapter 2 

Literature Review 

Modeling the price of oil is diffcult, because of many fuctuating variables over time. As 

can be seen in Figure 1.1, the oil price can dramatically change over a short time, which 

makes it very diffcult to predict. Oil demand and supply are quite inelastic in short 

time, meaning when the demand for oil exceeds supply, price will rise extremely high. 

On the other hand oil price is affected heavily by political turbulences. Such as 1999 

the Asian Financial Crisis and Iraq deciding to increase oil production, which caused oil 

prices to reach a bottom (LAM, 2013). More recently and during 2008 fnancial crisis, 

market volatility skyrocketed to $147 and dropped to below $40 levels in less than a year, 

showing how diffcult predicting oil price can be (USDOE, 2017). 

In general there are three different approaches in forecasting oil prices: long term, 

medium term and short term (Alquist, Kilian and Vigfusson, 2011). 

The long term forecasting looks into market for decades to come and is most used by 

central banks and governments to make macroeconomic policies. However, it requires 

so many variables and models that make it diffcult to be implemented by individuals 

and more is being done by government organizations. The Energy Information Admin-
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istration (EIA) of department of energy (DOE) have developed national energy model 

system (NEMS) tool for long-term forecasting of various energy related factors related 

to U.S. energy, including production, consumption, pricing, etc. The goal of this tool 

is to project national-level energy market in decades to come. Originally developed in 

1993, this model has been used in recent annual energy outlook to predict a comprehen-

sive list of energy related factors up to 2050 (DOE, 2017a). This computer-based model 

is based on macroeconomic and fnancial models and also includes many inputs and as-

sumptions. It consists of many integrated modules that interact with each other as part of 

an equilibrium calculation (DOE, 2017a). 

Medium term oil forecasting models focus on few years window. Central banks also 

use medium term models of oil price forecasting for Macroeconomic decision making. 

There most popular models to predict medium term oil price is Vector Autoregressive 

(VAR) models. The VAR model generally have high accuracy and the lower mean-square 

predication error with random walk for forecast horizon up to two years. The Interna-

tional Monterey Fund (IMF) working paper used VAR models to forecast the nominal 

price of oil benchmarks such as Brent and WTI instead of real oil prices. Recently there 

has been researches that used real time VAR models to forecast real price of oil for one 

year horizon. Baumeister and Kilian research has shown that the real price forecasts are 

more accurate than the forecasts based on future prices. Quarterly vector autoregressive 

models forecast estimate on monthly data. There are different approaches for the quar-

terly forecast. One way is to forecast the monthly real price of oil for each month and 

then convert them to quarterly average based on (Baumeister and Kilian, 2014). 

This project focuses on the short term forecasting of future oil prices, specifcally 

WTI crude oil. Forecasting such unpredictable economic series is stayed one of the main 

challenges for econometricians. In the literatures, there are several different models used 
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to predict and forecast short term oil prices. Historically linear structural models have 

not performed well for oil price forecasting and nonlinear time series models have per-

formed much better in forecasting oil prices (LAM, 2013),(Bosler, 2010) and (Moshiri 

and Foroutan, 2006). F. Bosler examined a time series approach, which includes linear 

and nonlinear time series analysis and also structural models (LAM, 2013). He compared 

linear ARIMA model and neural network autoregressive model for nonlinear time series 

analysis and confrmed that thenonlinear models forecasts perform the better and follow 

the volatility of the oil price. 

In another work, D. Lam modeled oil prices based on univariate time series using 

the Box-Jenkins methodology. Based on the ACF and PACF techniques ARIMA model 

was chosen, and followed by GARCH and APARCH as model residuals (Bosler, 2010). 

He also built a regression model to compare with his nonlinear model. The regression 

model was based on eight explanatory variables, including production, consumption, net 

import, ending stock, refnery utilization rate, U.S. interest rate, NYMEX oil futures 

contract 4 and S&P 500 index. But at the end the conclusion was that GARCH and 

APARCH perform the best. 

S. Moshiri et. al. furthermore proposed another nonlinear model to forecast daily 

crude oil futures prices from listed in NYMEX. They used a nonlinear and fexible arti-

fcial neural network (ANN) model to forecast the series and concludedit will improve 

forecasting accuracy. This work claims that “If the data generating process is nonlinear, 

applying linear models could result in large forecast errors. Model specifcation in non-

linear modeling, however, can be very case dependent and time-consuming” (Moshiri 

and Foroutan, 2006). 

A. Shabri et. al. have proposed an even more complicated forecasting model based 

on integrating wavelet transform and artifcial neural network (WANN) (Shabri and Sam-
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sudin, 2014). They decompose the price structure to various wavelet components and 

perform ANN model separately on each element. The conclusion was that WANN model 

provide better prediction for crude oil spot prices at lead times of 1 day for West Texas 

Intermediate (WTI) and Brent crude oil. 
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Chapter 3 

Oil Price Prediction 

This Project focuses on following models and compares their accuracy. It also imple-

ments some of these models to predict price of W&T Offshore index (WTI) 

1. Structural models 

• Depends on fundamental data such as demand and supply 

• Implemented through the use of a linear regression 

2. Time series-based models 

• Linear time series analysis, such as ARIMA 

• Nonlinear time series analysis, such as ARCH, GARCH 

• Autoregressive neural network (ANN) model 

3.1 Data 

The data for this project is taken from US Department of Enerdy, energy information 

administration (EIA) independent statistics and analysis (DOE, 2017b; USDOE, 2017), 
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where it has variety of information available. This includes prices, production levels, 

supplies, imports and many other relevant statistics to Cushing, OK west Texas interme-

diate (WTI) spot price freight on board (FOB). 

For the use in structural modeling, this project will focus on the monthly oil related 

indicators such as US percent utilization of operable capacity, feld production of crude 

oil, oil and petroleum imports, supplied products, crude oil future pricing, as well as US 

economy indicators such as SP500 stock price and ten year treasury constant maturity 

rate (DGS10) (fgure 3.1 and fgure 3.2). The data is available from EIA web site in 

Excel format, which is compatible with “read.csv” command in R for analysis (DOE, 

2017b). 

For the use in the time series model, we will only use the historical WTI oil price that 

was shown in fgure 1.1. This data was also taken from EIA web services (DOE, 2017b). 

3.2 Modeling 

Oil price is predicted by two main approaches: Structural model and time series model. 

In structural model, the price is forecasted using many explanatory variables, such as de-

mand and supply, consumption, production, available US stock of oil, net US oil imports, 

etc, as discussed by (LAM, 2013). The price is predicted using linear regression models 

and will predict with mean square error or mean absolute error at the end . On the other 

hand, the time series model can predict the price of oil, solely using the past price trend. 

Time series models predict using either linear (ARMA) or non-linear trends (GARCH or 

ANN) using the past time series rates. This project shows how to use frst three models, 

meaning linear regression, ARIMA and GARCH models, to forecast WTI index price 

since 2006. Because of the complexity of ANN models, it will not be investigated in this 
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project. 

3.2.1 Structural Models 

Structural modeling approach uses explanatory variable and determines the statistical 

relation to response variable and make predictions. So let‘s start with the structural 

model. As mentioned this model uses co-integration and correlation between different 

time-series explanatory variables. It uses multivariable linear regression model, to fnd 

the best ft. It assumes that spot price of oil is linearly correlated with each of historical 

value of oil price and the explanatory variables. For this linear regression, different time 
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Figure 3.1: Historical U.S. oil related variables used in structural modeling: top left: 

utilization (%), top right: production (thousand Barrels), bottom left: stock price per 

thousands Barrels, and bottom right: imports (thousand Barrels) (USDOE, 2017). 
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spans can be regressed. Hence depending on available data, different time spans for 

linear regression is assumed. This section provides 12 month oil price prediction by 

considering 13 to 120 months of data. 

In order to write regression formalism, we assume the price of oil at each given time 

period n is given by yn and presented by n × 1 matrix Y . At each given time xpn refers to 

value of explanatory variable p at period n and presented by p × n matrix X . Now at a 

given time n the price of oil can be linearly regressed using the the explanatory variables 

at time n0 as (LAM, 2013), 
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n0 
yn = β0 + ∑ βixin0 + εn. (3.1) 

i=1 

The set of regression equations in equation 3.1 for span of n events, can be summa-

rized in matrix form as 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ y1 ⎟ ⎜1 x1,1 . . . xp,1 ⎟ ⎜ β0 ⎟ ⎜ ε1 ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ y2 ⎟ ⎜1 x1,2 . . . xp,2 ⎟ ⎜ β1 ⎟ ⎜ ε⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ 2 ⎟⎟⎜ . ⎟ ⎜ . . . ⎟ ⎜ . ⎟ ⎜ . ⎟⎜ . ⎟= ⎜ . . . . .. . . . . ⎟ . ⎜ . . ⎟+ ⎜ . . ⎟ , (3.2) ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎜yn−1 ⎟ ⎜1 x1,n−1 . . . xp,n−1 ⎟ ⎜βp−1 ⎟ ⎜ε ⎟
n−1 ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 

yn 1 x1,n . . . xp,n βp εn 

or 

Y = Xβ + ε. (3.3) 

In equation 3.2, n refers to number of spot prices considered, and p refers to number 

of explanatory variables. First column of matrix X has unity values to denote the intercept 

of each line at given time. Matrix β will is solution matrix, where β0 refers to expected 

value of ftted intercept and βp refers to expected value of defned slope for explanatory 

variable p. Matrix ε contains error values εn, which is the difference between real and 

ftted prices at time n (LAM, 2013). 

The formalism listed above in 3.3 regresses the price of oil to the existing known 

events if n and n0 refer to the same time period. However in this work, in order to obtain 

a prediction to regress the price for κ = 12 steps in future, we shift the time span of n and 

n0 for this amount. Once we fnd the solution matrix β regressing price of today based 

on the data from κ steps in past, we apply it to current explanatory variable matrix to 

predict the price for κ steps in future. 
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The ftting can be optimized either using mean square error or mean absolute error 

(ε) methods. The expected value of solution of equation 3.2 is extracted as (LAM, 2013) 

β̂ = (XT X)−1XTY. (3.4) 

To model the WTI price, this project uses seven different variables. The data for these 

variables are extracted from US DOE EIA web site (USDOE, 2017). 

• First is the utilization of the refneries that represents the utilization of all crude 

oil distillation units. It is calculated by dividing gross inputs to these units by the 

operable refning capacity of the unit, which is in turn defned as the amount of 

capacity that, at the beginning of the period, is in operation, or those which are not 

in operation and not under active repair, but capable of being placed in operation 

within 30 days. Utilization shows seasonality. 

• Second explanatory variable is oil production, which ramps from 2012 to 2015, 

with a small drop after late 2015. 

• Third variable is US oil stocks, which shows a ramp after 2014. 

• The fourth variable is the oil import, which shows some small seasonality and has 

been decreasing since 2006 till 2014 and has remained low since then. 

• The ffth parameters to predict price of WTI index using regression model is oil 

consumption, which has not changed much over time, due to oil‘s inelastic nature. 

• Next variable is SP500 index prices as a measure of the market strength. 

• The last variable is US treasury 10-year yield bonds as a measure of the economic 

strength. 
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The last two parameters are more economic variables and not oil related. They are 

intended to correlate the oil price to the economy. The data for each of these variable is 

depicted in fgure 3.1 and fgure 3.2. All oil variables are per thousand barrels per time 

period. 

There are few important conditions for this model that has to be verifed (LAM, 

2013). First, absence of multicollinearity has to be met among explanatory variables. 

This means that parameters used for prediction should have small correlation of < 0.75. 

Table 3.1 summarizes the cross correlation between all 7 variables plus oil price itself 

(8 variables in total). As you can see all the selected variables satisfy the low cross 

correlation condition of being < 0.75 and hence the multicollinearity condition has met. 

Table 3.1: Cross correlation between different variables affecting oil prices 

Utilization Production Stock Import Consumption SP500 Price DGS10 

Utilization 1 

Production 0.28 1 

Stock 0.182 0.508 1 

Import -0.096 -0.636 -0.380 1 

Consumption 0.253 -0.065 -0.093 0.328 1 

SP500 0.375 0.529 0.274 -0.396 0.128 1 

Price 0.102 -0.056 -0.324 -0.003 -0.201 -0.098 1 

DGS10 0.104 -0.562 -0.437 0.513 0.282 -0.283 0.059 1 

The next condition is that the variables should also have constant variance in residual, 

which is also known as homoscedasticity. Uncorrelated errors assumption is the errors 

of the response variables are independent of each other. The errors must have normal 

distributinos, which can be checked by QQ plots test for normality of error. Lam (LAM, 

2013) used this model to predict three points ahead, but here up to 12 point ahead pre-
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diction is used. Later, we will see that time series methods can predict way more points 

than this and the result could be different with using different variables for regression. 

If we load the matrix for the time series data in the matrix X in equation 3.2, the 

solution matrix β only provide the best linear regression results for the present data. In 

order to use this model to predict the price in future, the oil price matrix (Y ) is shifted 

for amount of time in future that we would like to predict and the matrix X gets lagged 

from matrix Y for the number of points we would like to predict. Then solving equation 

3.2 for present values of X in equation 3.2 results in Y matrix that predict the oil price in 

future. 

To do this, there are two critical numbers that can change the prediction results. frst 

one is span of time we choose for ftting, and the second is number of time spans we 

would like to predict in future. Figure 3.3 shows four different ftting conditions for 12 

month oil price prediction, ftting data for consecutive 13, 24, 48 and 120 months. This 

graph shows the market WTI oil price as thin solid lines, estimated oil price as thick solid 

lines and estimated price as dashed lines. 

As seen in Figure 3.3, the price prediction can vary signifcantly, changing from $40 

to $80. In order to fnd the best ft, this project minimizes minimum least square error 

(MLSE), which is defned as 

s 
n 

MLSE = ∑(Y − Ŷ )2 , (3.5) 
i=1 

where n is number of time spans and Ŷ is ftted price numbers. The results of calculated 

MLSE value for ftting with various ftted time spans is shown in fgure 3.4. As can be 

seen for the set of data we described above, the best ft is achieved by ftting 8 spans. 

Any ftting considering less spans results in very large error. Above this limit the error 

increases with square root of number of samples. Hence for the ftting of price of oil, 
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3.2.2 Box Jenkins Approach (ARIMA) 

The next two methods for forecasting are using the time series approach. The structural 

model that was discussed before can only work, when there is less volatility in the data 

trend. But this can not be the case all the time. For example WTI oil price went through 

big volatility n 2009. Time series models are considered as they can deal with higher lev-

els of volatility, particularly for fnancial time series with inherent time-varying volatility 

clustering. These models use auto-regression and moving averages of past events and 

past returns, which are processed to predict the future events (Enders, 2015; Box, Jenk-

ins and Reinsel, 1994; Brockwell and Davis, 2006). 

As mentioned, in the time series approach, we will use the similarity in trends of 

the past prices and returns and replicate it in future using auto-regressive approaches. 

The simplest and most common time series ftting approach is Box.Jenkins also known 

as ARIMA. ARIMA stands for autoregressive integrated moving average model and is 

a linear model. ARIMA can predict non-stationary time series, by multiple integration 

and converting them to stationary. In another word ARIMA model is integrated ARMA 

model, which is combination of moving average process with linear difference to get 

autoregressive moving average (Enders, 2015). 

The ARIMA(p, d, q) parameter model for variable Yt is shown in equation 3.6 and it 

is consist of p: autoregressive parameter, d: number of differencing, q: moving average 

parameters (Enders, 2015; Box, Jenkins and Reinsel, 1994; Brockwell and Davis, 2006). 

p q 

Yt = φ0 +∑ φiYt−i + ∑ θ jεt− j + εt (3.6) 
i=1 j=1 

Here φis are auto regressive “AR” terms and represent lags of stationarized series and 

θ js are moving average “MA” terms and represent lags of the forecast errors. Here εs 

represent a white noise process, with zero mean, zero correlation across time and inde-
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pendent variables. ARMA model requires stationary series, which means constant mean 

and variance. Non-stationary series can become stationary and use ARIMA by taking 

dth order difference. Box-Cox transformation is often used for this purpose. Usually 

Log or log-difference are used, which is nothing but law of return. This work uses R-

package functions to calculate ftting ARIMA parameters (Enders, 2015; Box, Jenkins 

and Reinsel, 1994; Brockwell and Davis, 2006). 
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Figure 3.6: Top: Historical U.S. WTI stock price per thousands Barrels since 1986. 

Bottom: Log-return of oil price. 

WTI monthly data since 1986 are considered in this section. The top panel of fg-

ure 3.6 shows linear WTI price (USDOE, 2017). The bottom panel of fgure 3.6 shows 

logarithm of spot returns that is calculated by Log(pi/pi−1). In order to verify and test 

stationary nature of each of the data shown in fgure 3.6, ACF and PACF tests was per-

formed for both linear and log-return time series (Enders, 2015). First the results of this 
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Figure 3.7: Top: ACF and second form top: PACF of WTI oil price; third from top: ACF 

and bottom: PACF for log return of WTI oil price 
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test was performed on WTI price and the results are shown in two top panels of fgure 3.7. 

As it is visible the tail of ACF is not diminishing and PACF value exceeds the 0.1 limits. 

This means that the price of WTI monthly oil data is not stationary and can not be used 

in ARIMA model with d = 0. Next the log return time series data are considered. The 

bottom two panels in fgure 3.7 shows ACF and PACF calculation for WTI log returns. 

Based on the data shown in bottom two panels, the ACF seems to be diminishing and 

PACF is also well below 0.1 limits. Hence it is concluded that log difference is indeed 

stationary. So for forecasting these data either ARIMA(p,0,q) on the log return data will 

be used in this section and next section. 

Another method to validate the data is to use “Augmented Dickey-Fuller” test (En-

ders, 2015; Box, Jenkins and Reinsel, 1994; Brockwell and Davis, 2006). This test has 

been run using R. The results for WTI price is listed below. It clearly shows that the 

stationary null hypothesis is rejected (P > 0.04), proving that WTI oil price is not sta-

tionary. 

Augmented Dickey-Fuller Test 
data: log(oilspot.ts1) 
Dickey-Fuller = -1.9076, Lag order = 7, p-value = 0.6161 
alternative hypothesis: stationary 

Additionally the result for WTI price log return is also listed below. It is obvious 

that the null hypothesis is passed (P < 0.04), proofng that the log return of the data is 

stationary. 

Augmented Dickey-Fuller Test 
data: diff(as.vector(log(oilspot.ts1))) 
Dickey-Fuller = -7.8864, Lag order = 7, p-value = 0.01 
alternative hypothesis: stationary 

Next this section uses program R’s “autoArima” function to fnd the best order of p, 

d and q parameters. Based on stationary test, we expect the best ft having d = 0. One 
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Figure 3.8: Top: ARIMA 100 residual for WTI price log return; bottom: QQ plot of 

ARIMA100 residuals. 

of the conditions of ARIMA function is for input data to have zero mean. In order to 

also satisfy this conditions for ARIMA, the mean of log of return is subtracted from the 

log-return variables to get zero mean series. The result of “autoArima” function is listed 

below. It shows that ARIMA(1,0,0) for the log rerun (equivalent of ARIMA(1,1,0) for 

the oil price) return the best ft, which is frst-order autoregressive model. This means that 

log-return data can be predicted as a multiple of its own previous value, plus a constant. 

The forecasting equation in this case shown in equation 3.7, meaning that log-return is 
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regressed on itself lagged by one period. 

Ŷt = φ0 + φ1Yt−1 (3.7) 

ARIMA(2,0,2)(1,0,1)[12] with non-zero mean : -703.929 
ARIMA(0,0,0) with non-zero mean : -684.0895 
ARIMA(1,0,0)(1,0,0)[12] with non-zero mean : -725.2799 
ARIMA(0,0,1)(0,0,1)[12] with non-zero mean : -680.0588 
ARIMA(0,0,0) with zero mean : -689.7679 
ARIMA(1,0,0) with non-zero mean : -698.4504 
ARIMA(1,0,0)(2,0,0)[12] with non-zero mean : -718.4278 
ARIMA(1,0,0)(1,0,1)[12] with non-zero mean : -720.9864 
ARIMA(1,0,0)(2,0,1)[12] with non-zero mean : -714.0095 
ARIMA(0,0,0)(1,0,0)[12] with non-zero mean : -719.259 
I(1,0,0)[12] with non-zero mean : -721.2429 
ARIMA(1,0,1)(1,0,0)[12] with non-zero mean : -720.997 
ARIMA(2,0,1)(1,0,0)[12] with non-zero mean : -715.5432 
ARIMA(1,0,0)(1,0,0)[12] with zero mean : -730.882 
ARIMA(1,0,0) with zero mean : -703.9654 
ARIMA(1,0,0)(2,0,0)[12] with zero mean : -723.9279 
ARIMA(1,0,0)(1,0,1)[12] with zero mean : -726.5976 
ARIMA(1,0,0)(2,0,1)[12] with zero mean : -719.5286 
ARIMA(0,0,0)(1,0,0)[12] with zero mean : -724.8728 
ARIMA(2,0,0)(1,0,0)[12] with zero mean : -726.9369 
ARIMA(1,0,1)(1,0,0)[12] with zero mean : -726.573 
ARIMA(2,0,1)(1,0,0)[12] with zero mean : -721.2148 

Best model: ARIMA(1,0,0)(1,0,0)[12] with zero mean 

The rest of this section focuses on ARIMA(1,0,0). Referring to equation 3.7 , the 

desired ft has no θ j and only has φ1. Again ARIMA function in R is used to investigate 

the detail of this ft. The result of ARIMA (1,0,0) is listed below. The “ar1” variable is 

in fact φ1 used in equation 3.6. The s.e. the results is also very small, which is due to the 

fact that we deducted mean of the data before the ft. 

arima(x = log.return1, order = c(1, 0, 0), include.mean = FALSE) 
Coefficients: 

ar1 0.1380 
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s.e. 0.0518 
sigma^2 estimated as 0.009167: log likelihood = 351.37, 
aic = -700.74 

Figure 3.8 shows the residual values for the ft above as well we the QQ plot. The 

QQ plot displays a comparison of the sample quantiles to the corresponding theoretical 

quantiles (Enders, 2015; Box, Jenkins and Reinsel, 1994; Brockwell and Davis, 2006). 

The rule of thumb is if the points in a this plot depart from a straight line, then the 

assumed distribution is questionable. Based on the bottom panel of fgure 3.8, we can 

see that the QQ plot is fairly linear, particularly for theoretical quantiles between -2 and 

2. This manifests good quality of the ft we found. Figure 3.9 shows the ACF and PACF 

stationary test on the residual of above ARIMA(1,0,0) ft. It clearly shows that the ACF 

data on residuals vanished and PACF is mostly within 0.1 band. Hence the residual of 

this ft is stationary. 

3.2.3 Non-linear Time Series Models (GARCH) 

As discussed before, time series models provide better ft for data with volatility cluster-

ing. GARCH model stands for Generalized Autoregressive Conditional Heteroskedastic-

ity, and is calculated by ftting a nonlinear function (second degree polynomial) on past 

events. The condition is that there are some data points in a series for which the variance 

of the current error term is a square of the actual sizes of the previous time periods’ error 

terms. The GARCH(p,q) model is given by (Enders, 2015; Engle, 1982) 

q p 

σ
2 
t = ω +∑ αiε

2 2 
t−i +∑ βiσt−i, (3.8) 

i=1 i=1 

where following assumptions are made: 
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Figure 3.9: Top: ACF and bottom: PACF of ARIMA100 residuals. 

1. εt denotes the return residuals or error terms. It can be also described as εt = σt zt , 

assuming zt is a white noise and σt is time dependent standard deviation. 

2. ω > 0, αi > 0, βi > 0, and i > 0 

3. ∑
q p+i=1 αi  ∑

 
i=1 βi < 1 

This last condition is to satisfy the stationary nature of the time series. One step 

ahead can be forecasted using the coeffcient in the equation above and following term. 

More steps ahead can be calculated recursively from here. Hence it is expected as we 

predict more points ahead of use, the errors accumulate and the accuracy of the forecast 

decreases (Enders, 2015; Box, Jenkins and Reinsel, 1994; Brockwell and Davis, 2006). 

This work uses R-package functions to calculate ftting GARCH parameters. 
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For this “uGARCH” function from “fGARCH” package from R is used to forecast 

log-return of monthly WTI data. When we used in the quarterly data, it was too coarse to 

return reasonable ft as GARCH ftting model requires to have at least 100 data points in 

time series. A for-loop was used to check AIC of various fts and fnd best GARCH(x,y). 

It was found that GARCH(1,1) returns the lowest AIC indicating this one returns the 

best ft. Here we evaluate quality of forecast for GARCH(1,1) model on ARMA(0,0) 

to predict, which is combination of frst order GARCH and frst order ARCH models. 

Below is the summary of GARCH(1,1) forecast. 
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Figure 3.10: ACF of uGarch(1,1)’s Top: residual and bottom: residual squared. 

GARCH ORDER 11 on arma00 

*---------------------------------* 
* GARCH Model Fit * 
*---------------------------------* 
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Conditional Variance Dynamics 
-----------------------------------

GARCH Model : sGARCH(1,1) 
Mean Model : ARFIMA(0,0,0) 
Distribution : norm 

Optimal Parameters 
------------------------------------

Estimate Std. Error t value Pr(>|t|) 
mu 0.003259 0.003929 0.82954 0.406797 
omega 0.000918 0.000354 2.59050 0.009584 
alpha1 0.246215 0.060784 4.05069 0.000051 
beta1 0.658708 0.060412 10.90362 0.000000 

Robust Standard Errors: 
Estimate Std. Error t value Pr(>|t|) 

mu 0.003259 0.003804 0.85674 0.391588 
omega 0.000918 0.000341 2.68983 0.007149 
alpha1 0.246215 0.066083 3.72585 0.000195 
beta1 0.658708 0.056520 11.65448 0.000000 

LogLikelihood : 376.2167 

Information Criteria 
------------------------------------
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------------------------------------

------------------------------------

------------------------------------

------------------------------------

Akaike -1.9642 
Bayes -1.9226 
Shibata -1.9644 
Hannan-Quinn -1.9477 

Weighted Ljung-Box Test on Standardized Residuals 

statistic p-value 
Lag[1] 4.615 0.03169 
Lag[2*(p+q)+(p+q)-1][2] 4.996 0.04077 
Lag[4*(p+q)+(p+q)-1][5] 6.393 0.07259 
d.o.f=0 
H0 : No serial correlation 

Weighted Ljung-Box Test on Standardized Squared Residuals 

statistic p-value 
Lag[1] 0.3131 0.5758 
Lag[2*(p+q)+(p+q)-1][5] 0.9971 0.8603 
Lag[4*(p+q)+(p+q)-1][9] 2.6975 0.8077 
d.o.f=2 

Weighted ARCH LM Tests 

Statistic Shape Scale P-Value 
ARCH Lag[3] 0.6677 0.500 2.000 0.4138 
ARCH Lag[5] 0.6872 1.440 1.667 0.8273 
ARCH Lag[7] 2.1566 2.315 1.543 0.6842 

Nyblom stability test 

Joint Statistic: 0.4727 
Individual Statistics: 
mu 0.10550 
omega 0.13441 
alpha1 0.04379 
beta1 0.14143 

Asymptotic Critical Values (10% 5% 1%) 
Joint Statistic: 1.07 1.24 1.6 
Individual Statistic: 0.35 0.47 0.75 
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Sign Bias Test 
------------------------------------

t-value prob sig 
Sign Bias 0.6859 0.4932 
Negative Sign Bias 0.3493 0.7270 
Positive Sign Bias 0.4590 0.6465 
Joint Effect 3.210 

Figure 3.10 shows the ACF of the residual and residual squared of above ft. It clearly 

shows that the residual squared data has more stationary behavior, meaning that GARCH 

model would return better ft compared to linear time series models, i.e. ARIMA. Also 

fgure 3.11 shows the QQ analysis of the above GARCH(1,1) ft. It is much more linear 

compared to QQ analysis of best ARIMA model shown in fgure 3.8, particularly on third 

quadrants. This means again indicates that GARCH(1,1) forecast has better performance 

compared to ARIMA(1,1) shown in previous section (Mikosch, 2011). 
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Chapter 4 

Conclusions 

This work studied and evaluated various forecasting methods for monthly and quarterly 

WTI oil index data. It evaluated and compared few structural and time-series methods, 

including multivariable linear regression model, linear time series model (ARIMA) and 

nonlinear time-series modes (GARCH). 

Section 3.2.1 showed details of structural model and validated 8 different variables 

for using in this model. These variable were later used to regress various length of data 

to predict up to 12 month in advance. Based on MLSE analysis it was found that at least 

8 months of data has to be ftted to return small MLSE. Based on this oil price forecast 

for 9 months were performed. It indeed predicted drop of the oil price in the frst half of 

2017 and increase of the price towards the end of the year. However, this model suffers, 

when the data has big chance of volatility clustering, like what happened in 2009. 

To address data volatility clustering, section 3.2.2 and section 3.2.3 investigated linear 

and nonlinear time series based models, respectively. ARIMA model, which is a linear 

model, showed that applying ARIMA(1,0,0) on log-return data (equivalent of ARIMA 

(1,1,0) on original data) returns best performing ft. However, better ft found on residuals 
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squared compared to residuals suggesting advantage of the nonlinear models. Hence 

section 3.2.3 investigated nonlinear GARCH Model forecasting quality. It was found 

that GARCH(1,1) model provides best performing ft. The details of time-series models 

and forecasting also discussed in this report. 

In conclusion, due to high volatility nature of oil price, it is found that non-linear 

time series based forecasting provide the best forecasting. Nevertheless and due to com-

plicated cost dynamics of the oil, even the best models can have very large error in 

predicting real price of oil in the future, particularly when it is forecasting for longer 

stretches of time. 
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Appendices 

A Matlab Code for Structural Modeling 

clear all; close all; clc; 
set(0,’DefaultAxesLineWidth’,2) 
set(0,’DefaultAxesFontSize’,20) 
i=0; 
mt2=13:48; % Total months fitted looping 
for mt=mt2 

i=i+1; 
[MLSE(i),MLAE(i)]=Multivariable_regression2(mt,12); 

end 
figure(10); plot(mt2,MLSE); hold on; 
xlabel(’Month Fitted’); ylabel(’MLSE ($)’); grid on; 
% plot(mt2,MLAE,’r’) 

function [MLSE,MLAE]=Multivariable_regression2(mt,ma) 
warning off; 
% mt=120; % Total months fitted 
% ma=6; % Total months predicted after last point 
year=(2006+(1:133+ma)./12)’; 
dl=importdata(’Oil_Data_csv.csv’); %read data 
data=dl.data; 
%Cushing OK Crude Oil Future Contract 4 (Dollars per Barrel) 
Y=data(134-mt:end,7); 
X=[data(134-mt-ma:end-ma,1) data(134-mt-ma:end-ma,2) ... 
data(134-mt-ma:end-ma,3) data(134-mt-ma:end-ma,4) ... 
data(134-mt-ma:end-ma,5) data(134-mt-ma:end-ma,6)... 

data(134-mt-ma:end-ma,8) ]; % all other variables with a lag to Y 
X=[ones(length(Y),1) X]; %Adding first coloumn of X matrix 
beta=inv(X’*X)*X’*Y; %solving regression 
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Y_estimate=X*beta; %Calculating fitted Y 
figure(1); %subplot(4,1,4); 
plot(year(1:end-ma),data(:,7),’LineWidth’,3); hold on; 
xlabel(’Year’); ylabel(’WTI Price ($)’); grid on; 
error=Y-Y_estimate; %calculating spot error 
MLSE=sqrt(sum(error.^2))./length(error); 
MLAE=sum(abs(error))./length(error); 
% figure(2); plot(year(134-mt:end-ma),error) 
% xlabel(’Year’); ylabel(’Estimation Error ($)’); 
X2=[data(134-mt:end,1) data(134-mt:end,2) data(134-mt:end,3) ... 

data(134-mt:end,4) data(134-mt:end,5) data(134-mt:end,6) ... 
data(134-mt:end,8) ]; %constructing X matrix without lag 

X2=[ones(length(Y),1) X2]; %Adding first coloumn of X matrix 
Y_estimate2=X2*beta; % Use the regression solution to predict 
figure(1); %subplot(4,1,4) 
plot(year(133:end),Y_estimate2(end-ma:end),’r’); 
plot(year(134-mt:end-ma),Y_estimate,’k’,’LineWidth’,3) 
legend(’WTI Price’,’Estimation’,’Original Fitting’) 
title([’Months Considered = ’ num2str(mt) ’, ... 
Months Predicted = ’ num2str(ma)]) 
end 
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B R Code for Non-Linear Modeling 

setwd("/Users/halleh/Desktop/masters/spring 2017/Thesis") 
rm(list=ls()) 

library(quantmod); library(fGarch); 
#library(rugarch); #library(sarima); 
#library(FinTS); 
library(tseries); 
library(forecast); library(stats); library(fBasics); 
library(car); library(PerformanceAnalytics); library(TSA); 
library(astsa); 

WTI_data=read.csv("Cushing_OK_WTI_Spot_Price_FOB.csv") 
WTI = xts(WTI_data[,-1], order.by=as.Date(WTI_data[,1], "%m/%d/%Y")) 
WTI=to.monthly(WTI) 
colnames(WTI) 
start(WTI) 
end(WTI) 

# extract adjusted closing prices 
WTI = WTI[, "WTI.Close", drop=F] 

oilspot.ts1<-ts(WTI,start=c(1986,1),frequency=12) 
#Set up realised values for validation 
#realised.ts1<-diff(log(ts(WTI,start=c(1986,1),frequency=12))) 
summary(oilspot.ts1); 
#BoxCox plots to show the need of log transformation 
ts.plot(BoxCox(oilspot.ts1,lambda = seq(-2, 2, 1/10))); 
plot(log(oilspot.ts1), 

ylab="Quarterly WTI spot price US$"); abline(v=2003) 
#ADF test indicating non-stationarity 
adf.test(log(oilspot.ts1),alternative=c("stationary")) 
#ADF test indicating non-stationarity 
adf.test(diff(as.vector(log(oilspot.ts1))),alternative=c("stationary")) 

#log return plot 
plot(diff(log(oilspot.ts1)),start=c(2005,1), frequency=4, 

ylab="Monthly WTI spot Return US$") 
abline(v=2003,h=0) 
log.return1<-diff(log(oilspot.ts1)) 
#ACF and PACF plots 
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par(mfrow=c(1,2)); 
acf(as.vector(log.return1),drop.lag.0=FALSE) 
pacf(as.vector(log.return1)) 
summary(log.return1) 
log.return1=log.return1-mean(log.return1) 

#best arima fit 
fit1<- auto.arima(log.return1, trace=TRUE, test="kpss", ic="bic") 
Box.test(fit1$residuals^2,lag=10, type="Ljung-Box") 

#Models determined 
model1<-arima(log.return1,order=c(2,0,2),include.mean=FALSE) 
#Residual analysis 
plot(model1$resid);abline(h=0) 
mean(model1$resid); 
#Residual ACF and PACF plots 
acf(as.vector(model1$resid),drop.lag.0=FALSE) 
pacf(as.vector(model1$resid)) 
acf(as.vector(model1$resid^2),drop.lag.0=FALSE) 

#Normality tests 
qqnorm(residuals(model1)); qqline(residuals(model1)) 
jarque.bera.test(model1$resid); 
#Independence tests 
McLeod.Li.test(,model1$resid,gof.lag=20) 

#GARCH model fitted 
#model.garch1<-garch(model1$resid,order=c(1,1),trace=F) 
#model.garch1.res<-resid(model.garch1)[-1] 
#acf(model.garch1.res,drop.lag.0=FALSE) 
#pacf(model.garch1.res) 
#acf(model.garch1.res^2,drop.lag.0=FALSE) 
#pacf(model.garch1.res^2) 
#For comparing forecast accuracy, fit GARCH/APARCH models 
#gfit1<-garchFit(formula=~arma(0,1)+garch(1,1), 
# data=log.return1,trace=FALSE,include.mean=FALSE) 
#gfit11<-garchFit(formula=~arma(0,1)+aparch(1,1), 
# data=log.return1,trace=FALSE,include.mean=FALSE) 
#gfit2<-garchFit(formula=~arma(2,2)+garch(1,1), 
# data=log.return1,trace=FALSE,include.mean=FALSE) 
#gfit22<-garchFit(formula=~arma(2,2)+aparch(1,1), 
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# data=log.return1,trace=FALSE,include.mean=FALSE) 

#garch11.spec = ugarchspec(variance.model = list(garchOrder=c(1,1)), 
mean.model = list(armaOrder=c(0,0)), fixed.pars=list(mu = 0, omega=0.1, 
alpha1=0.1,beta1 = 0.7)) 

garch11.spec = ugarchspec(variance.model = list(garchOrder=c(1,1)), 
mean.model = list(armaOrder=c(0,0))) 

oil.garch11.fit = ugarchfit(spec=garch11.spec, data=log.return1, 
solver.control=list(trace = 1)) 
class(oil.garch11.fit) 
slotNames(oil.garch11.fit) 
names(oil.garch11.fit@fit) 
names(oil.garch11.fit@model) 

# show garch fit 
oil.garch11.fit 

# use extractor functions 

# estimated coefficients 
coef(oil.garch11.fit) 
# unconditional mean in mean equation 
uncmean(oil.garch11.fit) 
# unconditional variance: omega/(alpha1 + beta1) 
uncvariance(oil.garch11.fit) 
# persistence: alpha1 + beta1 
persistence(oil.garch11.fit) 
# half-life: 
halflife(oil.garch11.fit) 
# residuals: e(t) 
plot.ts(residuals(oil.garch11.fit), ylab="e(t)", col="blue") 
abline(h=0) 
# sigma(t) = conditional volatility 
plot.ts(sigma(oil.garch11.fit), ylab="sigma(t)", col="blue") 
# illustrate plot method 
par(mfrow=c(3,3)) 
#plot(oil.garch11.fit) 
#plot(oil.garch11.fit, which=1) 
plot(oil.garch11.fit, which="all") 
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#plot(oil.garch11.fit, which=9) 
# simulate from fitted model 
oil.garch11.sim = ugarchsim(oil.garch11.fit, n.sim=nrow(log.return1), 
rseed=12, startMethod="unconditional") 
class(oil.garch11.sim) 
slotNames(oil.garch11.sim) 
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